

Weatherford*

Ultra-Grip[™] Screens

Weatherford's *Ultra-Grip* screens are the most highly evolved wrapped-on-pipe screens, with lineage going back to Weatherford's invention of the shrink-fit manufacturing process 25 years ago. These screens are built for excellent mechanical strength to perform in the most demanding openhole and casedhole environments.

Applications

- · Openhole and cased-hole completions with high-pump rates and pressures
- Openhole, standalone completions in well-sorted, homogeneous reservoirs
- · Horizontal and extended-reach wells
- Thermal/steam-injection wells

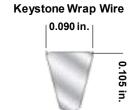
Features, Advantages and Benefits

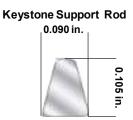
- Patented *Ultra-Grip* manufacturing process shrink-fits the screen to the pipe to provide greatly improved tensile, torque, and collapse strength over conventional slip-on screens.
- Profile surface wire is heat-resistant welded to a series of shaped support rods directly on the perforated base pipe.
- Heavy-duty surface wire provides greater erosion resistance, increased mechanical strength and longer life in the most demanding environments.
 - Original keystone-shaped wire configuration for maximal nonclogging, self-cleaning, and free flow of materials.
 - House-shaped wire for increased flow area and greater erosion resistance.
- Shaped rods and shaped wrap wire provide superior weld-to-weld strength.
- High-precision slot tolerances and precision-formed, application-specific wire profiles provide optimal exclusion of formation materials while maximizing production of hydrocarbons.

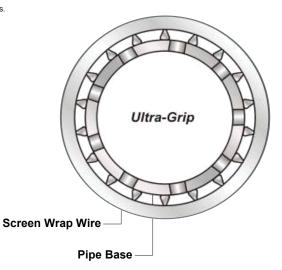
1

- Ultra-Grip screens are available in a wide selection of stainless steel and high-nickel alloys for optimum customization to the application.
- Ultra-Grip screens are easily retrievable, even in the most rigorous fishing operations.

Ultra-Grip[™] *Screens*


Specifications


Base Pipe E			End Ring	Screen					
Size (in.)	Weight (lb/ft)	ID (in./ <i>mm</i>)	OD (in./mm)	OD (in./ <i>mm</i>)	Weight (lb/ft)	Tensile Strength ¹ (lbf/ <i>kN</i>)	Maximum Bend Angle ² (°/100 ft)	Burst Resistance (psi/ <i>MPa</i>)	Collapse Resistance (psi/MPa)
3-1/2	9.2	2.99 76.07	4.01 101.85	3.88 98.55	12.6	88,690 395	86	3,500 24.14	4,800 33.10
4	9.5	3.55 90.17	4.51 114.55	4.38 111.25	12.9	182,210 <i>811</i>	75	3,400 23.45	4,600 31.72
4-1/2	11.6	4.00 101.60	5.01 127.25	4.88 123.95	15.0	226,980 1,010	67	3,200 22.07	4,400 30.34
5	15.0	4.41 111.96	5.51 139.95	5.38 136.65	18.4	297,450 1,323	60	3,000 20.69	4,200 28.96
5-1/2	17.0	4.89 124.26	6.01 152.65	5.88 149.35	19.4	337,440 1,501	54	2,800 19.31	4,400 27.59
6-5/8	24.0	5.92 150.37	7.13 181.10	7.00 177.80	27.4	472,340 2,101	45	2,650 18.27	3,800 26.21
7	26.0	6.276 159.41	7.51 190.75	7.38 187.45	29.4	513,340 2,283	43	2,500 17.27	3,700 25.52


¹Screen tensile strength is based on entire screen assembly. ²Maximum bend angle for screen is based on L80 pipe.

Maximum dogleg severity is 50% of bend angle. All values are based on 316L screen jackets.

Collapse and burst resistance are based on tests using ISO 17824 sand-screen test procedures. All OD dimensions are maximum, based on nominal API pipe dimensions. All values are nominal, except for the above noted OD dimensions.

