

CT Running Tool

The Weatherford CT running tool is used to deploy an e-line inflatable retrievable bridge plug (E-IRBP). The running tool allows weight to be slacked onto the E-IRBP during inflation while ensuring that the optimal inflation pressure is attained. When full inflation pressure is reached, tubing-to-annulus equalization provides a positive indication that the plug is set. The tool is releasable with a simple overpull.

Applications

- The CT running tool can be used for all applications where a CT-inflatable retrievable bridge plug (CT-IRBP) would be used, and where the ability to stack multiple plugs would assist operations.
- Specific uses include plug-back, zonal isolation, and creating a multiple barrier for wellhead change out.

Features, Advantages and Benefits

- The tool's simple operation increases reliability.
- The low-force, straight pull release eliminates the need to rotate the tubing to release from the E-IRBP.
- Tubing-to-annulus equalization provides assurance the tool is functioning as designed.
- One tool for all E-IRBP sizes reduces inventory costs.
- The tool's straightforward design permits fast and easy redress.

CT Running Tool

Specifications

Tool Size (in./mm)	Overall Length (in./mm)	Piston Area (in.²/cm²)	Setting Pressure Maximum ¹ (psi/ <i>Mpa</i>)	Release Force Maximum² (lbf/kN)	Standard Thread Connection (in.)
1.69	17.75	1	2,400	3,000	1 WTS-8
42.93	450.85	6. <i>4</i> 5	16.55	13.34	

¹ See Table A ² See Table B

Table A: Setting pressure

Shear Screws Quantity	Pressure to Shear (psi/ <i>MPa</i>)		
1	300 2.07		
2	600 4.14		
3	900 6.21		
4	1,200 8.27		
5	1,500 <i>10.34</i>		
6	1,800 <i>12.41</i>		
7	2,100 14.48		
8	2,400 16.55		

Table B: Release Force

Shear Screws Quantity	Force to Shear (lbf/kN)	
1	300 1.33	
2	600 2.67	
3	900 <i>4.00</i>	
4	1,200 <i>5.34</i>	
5	1,500 6.67	
6	1,800 <i>8.01</i>	
7	2,100 9.34	
8	2,400 10.67	
9	2,700 12.01	
10	3,000 13.34	